
Documentation for Zn.h and Zn.c
Steven Andrews, © 2003

See the document “LibDoc” for general information about this and other libraries.

#include <stdio.h>
#include <stdlib.h>
#define allocZV(n) ((int *) calloc(n,sizeof(int)))
#define freeZV(a) free(a)

int *setstdZV(int *c,int n,int k);
int *printZV(int *c,int n);
int *fprintZV(FILE *stream,int *c,int n);
int minZV(int *a,int n);
int maxZV(int *a,int n);
int *copyZV(int *a,int *c,int n);
int *sumZV(float ax,int *a,float bx,int *b,int *c,int n);
int *deriv1ZV(int *a,int *c,int n);
int *deriv2ZV(int *a,int *c,int n);
int productZV(int *a,int n);
int intfindZV(int *a,int n,int i);
int indx2addZV(int *indx,int *dim,int rank);
int *add2indxZV(int add,int *indx,int *dim,int rank);
int nextaddZV(int add,int *indx1,int *indx2,int *dim,int rank);
int indx2add3ZV(int *indx,int rank);
int *add2indx3ZV(int add,int *indx,int rank);
int neighborZV(int *indx,int *c,int *dim,int rank,int type,int *wrap,int *mid);

Requires: <stdio.h>, <stdlib.h>, "random.h"

Example program: none

Written 10/01; some testing. Written on Linux, copied to Macintosh. Added tensor
routines 10/31/01. Added fprintZV and intfindZV 3/03. Modified neighborZV and
added add2indx3ZV and indx2add3ZV 7/7/03. Added nextaddZV 7/14/03.

This library is comparable to the Rn.c and Cn.c libraries, but is designed for vectors
of integers rather than real or complex numbers. There are also some routines for
keeping track of the indicies of tensors, routines which can also be used for converting
the base of a number. For all routines where they are used, a, b, and c are pointers to
arrays of integers where c is the output array, and n is the number of elements (numbered
from 0 to n-1). Unless otherwise specified, the functions return c to allow easy
concatenation of routines. Routines don’t have internal error checking and assume the
input is good (all vectors defined and n≥1).

Functions

setstdZV initializes a vector, where the initial value depends on k. k=0 yields all 0’s, k=1
yields all 1’s, k<0 yields all zeros except for the element at position -k which is 1,
k=2 yields sequential numbering from 0 to n-1, and k=3 yields either a 0 or 1 for
each position, chosen randomly with equal probability. It’s not defined for k>3.

printZV prints the vector contents in a single row of text.

fprintZV is identical to printZV, but prints to filestream stream.

minZV returns the smallest value in the vector.

maxZV returns the largest value in the vector.

copyZV copies a vector.

deriv1ZV returns the first derivative of a vector, assuming unit spacing. n must be at least
3. See documentation for Rn.c for more details. The function requires a division
by two for the calculation of each element of c; as these are vectors of integers and
integer arithmetic truncates any fractional part, this means that the derivative will
underestimate the actual derivative by about 0.5, on average. The derivative of
0,1,2,3 is 1,1,1,1 as it should be, but the derivative of 0,0,1,1 is 0,0,0,0. The second
derivative function has no division and so does not have round-off problems.

deriv2ZV returns the second derivative of a vector, assuming unit spacing. n must be at
least 3. See documentation for Rn.c for more details. The function has no division
and so does not have round-off problems.

productZV calculates the product of all the elements of a. It’s mostly useful for
determining the maximum address of a tensor or the largest number expressible in a
certain base, both of which are described below.

intfindZV looks for the value i in the vector a, which has size n, returning the index
where i is found if it is found, and -1 if it is not found.

indx2addZV converts the index of a tensor element to its address, assuming values are
numbered sequentially. indx and dim have rank elements each, where indx is the
index and dim is the size of each tensor dimension. Negative values are permitted in
indx, which can be useful for determining relative addresses, although all values of
dim should be ≥1. This does not check if the address is less than 0 or greater than
the tensor size. See discussion below.

add2indxZV converts an address to the index. The address must be positive. This does
not check if the input address is possible. See discussion below.

nextaddZV inputs an address as add and two indicies as indx1 and indx2, as well as the
tensor dimensionality and rank in dim and rank, respectively. The return value is
the next sequential address which is within the sub-tensor defined with the lower
corner at indx1 and upper corner at indx2. This is particularly useful in a for loop,
in which it is desirable to look at all addresses in a certain region of the tensor. For
example,

add1=indx2addZV(indx1,dim,rank);
add2=indx2addZV(indx2,dim,rank);
for(add=add1;add<=add2;add=nextaddZV(add,indx1,indx2,dim,rank));

This function assumes that every element of indx1 is less than or equal to the
respective element of indx2, and it does not account for periodic boundaries. The

return value is undefined if add is not within the range defined by indx1 and indx2.
If add corresponds to indx2, the returned value is add+1.

indx2add3ZV is identical to indx2addZV, except that all dim elements are set equal 3.

add2indx3ZV is identical to add2indxZV, except that all dim elements are set equal 3.

neighborZV returns the number of neighbors of an element along with their addresses,
sent back in c. A return value of –1 means that temporary memory could not be
allocated. Otherwise there is no error checking. indx is the element and dim and
rank refer to the tensor. mid is used by the function to return the mid-point of c; the
neighbors from c[0] to c[mid-1] logically precede the indexed element, whereas
c[mid] to c[n-1] logically follow the indexed element. mid may be sent in as NULL if
this information is not wanted. There are several allowable type values:

type neighbor wrap-around order size of c size of wrap
–1 This code is used to free any temporary memory that was allocated
0 nearest none increasing ≤ 2*rank N/A
1 nearest all none ≤ 2*rank N/A
2 all none increasing ≤ 3^rank-1 N/A
3 all all none ≤ 3^rank-1 N/A
4 nearest partial none ≤ 2*rank rank
5 all partial none ≤ 3^rank-1 rank
6 nearest partial none ≤ 2*rank 2*rank
7 all partial none ≤ 3^rank-1 3^rank-1

Nearest neighbors are just those above, below, left, right, etc. of an element; they
share a side. All neighbors includes also diagonal and corner neighbors. Wrap-
around refers to the neighbors of an edge element, which can be either nothing on
the edge side, or the wrapped around element. The non-wrap-around routines
return c in increasing order of addresses. For types 0 to 5, addresses are not
repeated in c, even if a neighbor is a neighbor in multiple ways, although they are
for types 6 and 7. The size of c needs to be allocated beforehand to be large enough
for the result. Partial wrap-around means that some dimensions wrap-around,
whereas others don’t; this information is sent to the routine in the first rank
elements of wrap, where a 0 means don’t wrap and a 1 means wrap. For types 6 and
7, the information is overwritten with the wrap code, which tells in what way each
neighbor is a neighbor. In the wrap code, pairs of bits are associated with each
dimension (low order bits with low dimension), with the bits equal to 00 for no
wrapping in that dimension, 01 for wrapping towards the low side, and 10 for
wrapping towards the high side. See the example below.

Functions types 2, 3, 5, 6, and 7 require small amounts of temporary memory as
scratch space. This is allocated the first time the function is called, but is not freed
afterwards, allowing the function to be called multiple times with minimal run-time
overhead. At the end, it is proper to call the function one more time, with a type
value of –1, to free any memory that was allocated. In this case, all other
parameters are ignored.

Discussion of tensor routines

The tensor routines assume a tensor is stored sequentially in memory with the 0’th
dimension varying most slowly, and the rank–1’th dimension varying most quickly. For

example, a matrix with m rows and n columns (see Rn.c), which is stored with values
filling one row before starting the next row, would be interpreted as having m as the 0’th
dimension and n as the first dimension. In that case, the address of index i,j is a=n*i+j
and the index of address a is i=a/n, j=a%n, where / represents integer arithmetic and % is
the modulus operator. These routines can also be used to convert a number from one
base to another. In this case all the dimension values are set to the base number, the rank
is the number of digits, and the 0’th digit is the most significant digit.

Here are some examples of converting addresses to indicies, indicies to addresses,
and of various ways of determining neighbors, using a rank 2 array. The numbers in the
array are the addresses, while the row and column numbers are the indicies.

 dim[1]=4

0 1 2 3

0 | 0 1 2 3
 dim[0]=3 1 | 4 5 6 7

2 | 8 9 10 11

Here, dim is a vector equal to dim=[3,4] and rank=2.
If indx=[1,2], then indx2addZV(indx,dim,rank) returns 6.
If add=6, then add2indxZV(add,indx,dim,rank) returns indx=[1,2].
If indx=[2,0], neighborZV(indx,c,dim,rank,type,wrap) returns:

type=0 and wrap=NULL: n=2, mid=1, c=[4,9].
type=1 and wrap=NULL: n=4, mid=2, c=[4,11,9,0].
type=2 and wrap=NULL: n=3, mid=2, c=[4,5,9].
type=3 and wrap=NULL: n=8, mid=4, c=[7,4,5,11,9,3,0,1].
type=4 and wrap=[1,0]: n=3, mid=1, c=[4,9,0].
type=5 and wrap=[1,0]: n=5, mid=2, c=[4,5,9,0,1].
type=6 and wrap=[1,0]: n=3, mid=1, c=[4,9,0], wrap=[0,0,2].
type=7 and wrap=[1,0]: n=5, mid=2, c=[4,5,9,0,1], wrap=[0,0,0,2,2].
type=6 and wrap=[1,1]: n=4, mid=2, c=[4,11,9,0], wrap=[0,4,0,2].
type=7 and wrap=[1,1]: n=8, mid=4, c=[7,4,5,11,9,3,0,1], wrap=[4,0,0,4,0,6,2,2].

Here is a fragement of code for determining the type of wrap-around, using one of the
last two forms of the the neighborZV function:

for(j=0;j<rank;j++)
 wptype[j]=wrap[i]>>2*j&3;

The result is 0, 1, or 2 on each dimension, where 0 indicates no wrap-around, 1 indicates
wrap-around towards the low side, and 2 indicates wrap-around towards the high side.

